На месте удаленного яичника образование


Какие последствия могут быть после удаления яичника

Односторонняя овариоэктомия является частым оперативным вмешательством, производимым по поводу доброкачественных и кистозных образований яичника, обширного эндометриоза, внематочной беременности, гнойно-воспалительных заболеваний и т.д. Обычно она проводится в предменопаузальном периоде, но нередко удаление яичника переносят молодые женщины в активном репродуктивном возрасте, что составляет около 12% в гинекологических стационарах. Односторонняя овариоэктомия снижает вероятность наступления беременности. Основным методом лечения бесплодия в этой ситуации является ЭКО оплодотворение.

Изменения, происходящие в организме

Сама по себе овариоэктомия несложная и не требует длительной реабилитации, особенно если выполняется при помощи лапароскопа и удаляется только один яичник. Однако, она имеет целый ряд негативных последствий для здоровья женщины и проводится исключительно по жизненно-важным показаниям. Удаление яичника вызывает изменения работы гормональной системы, повышение активности свертывающей системы крови, нарушение липидного и общего жирового обмена, развитие сердечно-сосудистых заболеваний и остеопороза, снижение возможности зачатия. После операции могут возникнуть следующие клинические проявления:

  • приливы, повышенная потливость особенно в ночное время;
  • нарушение психоэмоционального состояния – постоянная тревожность, плаксивость, быстрая смена настроения;
  • неконтролируемое повышение давления, развитие гипертензии;
  • снижение или полное отсутствие либидо;
  • чрезмерная утомляемость, нарушение сна;
  • постоянные головные боли;
  • сухость влагалища, частые позывы к мочеиспусканию.

Выраженность симптомов зависит от целого ряда факторов и, прежде всего, от возраста пациентки.

Односторонняя овариоэктомия может сопровождаться нарушением менструального цикла. Она приводит к снижению уровня эстрадиола, что вызывает компенсаторное повышение концентрации гонадотропинов, причем секреция ФСГ возрастает раньше и достигает более высокого уровня по сравнению с концентрацией лютеинизирующего гормона. Это свидетельствует о развитии овариальной недостаточности яичника и нарушении способности к деторождению. Физиологическая стимуляция фолликулостимулирующего гормона (ФСГ), наблюдаемая после оперативного вмешательства, приводит к компенсаторному увеличению оставшегося яичника. Размеры, достигаемые им в течение первых шести месяцев, являются максимальными, после этого его объем начинает сокращаться, и через год после овариоэктомии он не превышает 14 куб. см. В этом состоянии яичник стабилизируется и в дальнейшем существенно не изменяется. В течение года после оперативного вмешательства происходит постепенное компенсаторное восстановление структуры и функции яичника, однако полной нормализации не наступает.

Можно ли забеременеть с одним яичником?

Проведение односторонней овариоэктомии снижает шансы материнства, так как приводит к преждевременному истощению овариального резерва. Однако, если изначально его уровень был высоким, а других патологий в репродуктивной системе, кроме заболевания, ставшего показанием к оперативному вмешательству, у женщины не было, то она может забеременеть. Определить это возможно практически сразу после проведения операции. Ультразвуковое и рентгенологическое исследования позволяют оценить проходимость и форму оставшегося придатка, и шансы наступления беременности. Если овуляция происходит, труба проходима, и спермограмма у партнера хорошая, то вероятность зачатия достаточно высока. В отдельных случаях может потребоваться проведение ЭКО, основными показаниями к которому являются:

  • непроходимость оставшейся маточной трубы;
  • наличие сопутствующих рисков бесплодия;
  • плохое качество эякулянта партнера;
  • отсутствие беременности после шести циклов приема гонадотропинов.

В случае, если запас ооцитов в сохранившемся яичнике истощился полностью, добиться зачатия будет возможно только посредством имплантации донорских яйцеклеток. В нашем центре ЭКО можно пройти все виды обследования и, при необходимости, провести экстракорпоральное оплодотворение после проведенной овариоэктомии.


Вы и ваши гормоны от Общества эндокринологов

Альтернативные названия

Яичник (единичный)

Где яичники?

Изображение женской репродуктивной системы, показывающее расположение яичников.

Яичники являются частью женской репродуктивной системы. У каждой женщины по два яичника. Они имеют овальную форму, около четырех сантиметров в длину и лежат с обеих сторон матки (матки) у стенки таза в области, известной как яичниковая ямка.Они удерживаются на месте связками, прикрепленными к матке, но не прикреплены напрямую к остальной части женского репродуктивного тракта, например маточные трубы.

Что делают яичники?

Яичники выполняют две основные репродуктивные функции в организме. Они производят ооциты (яйца) для оплодотворения и вырабатывают репродуктивные гормоны, эстроген и прогестерон. Функция яичников контролируется гонадотропин-рилизинг-гормоном, высвобождаемым нервными клетками в гипоталамусе, которые посылают свои сигналы в гипофиз для производства лютеинизирующего гормона и фолликулостимулирующего гормона.Они попадают в кровоток, чтобы контролировать менструальный цикл.

Яичники выделяют яйцеклетку (ооцит) в середине каждого менструального цикла. Обычно во время каждого менструального цикла выделяется только один ооцит из одного яичника, причем каждый яичник по очереди выпускает яйцеклетку. Ребенок женского пола рождается со всеми яйцеклетками, которые у нее когда-либо будут. По оценкам, это около двух миллионов, но к тому времени, когда девочка достигнет половой зрелости, это число уменьшится до примерно 400000 яйцеклеток, хранящихся в ее яичниках.От периода полового созревания до менопаузы только около 400–500 яйцеклеток достигают зрелости, выходят из яичника (в процессе, называемом овуляцией) и могут оплодотворяться в маточных трубах / маточной трубе / яйцеводах женского репродуктивного тракта.

Яичниковые фазы 28-дневного менструального цикла. Овуляция происходит в середине цикла.

В яичнике все яйца изначально заключены в один слой клеток, известный как фолликул, который поддерживает яйцеклетку.Со временем эти яйца начинают созревать, так что одна из них выделяется из яичника в каждом менструальном цикле. По мере созревания яиц клетки фолликула быстро делятся, и фолликул становится все больше. Многие фолликулы теряют способность функционировать во время этого процесса, который может длиться несколько месяцев, но один из них доминирует в каждом менструальном цикле, и содержащаяся в нем яйцеклетка высвобождается во время овуляции.

По мере развития фолликулов вырабатывается гормон эстроген. После того, как яйцеклетка была выпущена во время овуляции, пустой фолликул, оставшийся в яичнике, называется желтым телом.Затем высвобождаются гормоны прогестерон (в большем количестве) и эстроген (в меньшем количестве). Эти гормоны подготавливают слизистую оболочку матки к потенциальной беременности (в случае оплодотворения выпущенной яйцеклетки). Если выпущенная яйцеклетка не оплодотворяется и беременность не наступает во время менструального цикла, желтое тело разрушается, и секреция эстрогена и прогестерона прекращается. Поскольку этих гормонов больше нет, слизистая оболочка матки начинает отпадать и удаляется из организма во время менструации.После менструации начинается еще один цикл.

Менопауза означает окончание репродуктивного возраста женщины после последней менструации. Это вызвано потерей всех оставшихся в яичнике фолликулов, содержащих яйца. Когда больше нет фолликулов или яйцеклеток, яичник больше не выделяет гормоны эстроген и прогестерон, регулирующие менструальный цикл. В результате менструация прекращается.

Какие гормоны вырабатывают яичники?

Основными гормонами, секретируемыми яичниками, являются эстроген и прогестерон, оба важные гормоны менструального цикла.Производство эстрогена преобладает в первой половине менструального цикла перед овуляцией, а производство прогестерона преобладает во второй половине менструального цикла, когда сформировалось желтое тело. Оба гормона важны для подготовки слизистой оболочки матки к беременности и имплантации оплодотворенной яйцеклетки или эмбриона.

Если зачатие происходит во время одного менструального цикла, желтое тело не теряет своей способности функционировать и продолжает выделять эстроген и прогестерон, позволяя эмбриону имплантироваться в слизистую оболочку матки и образовывать плаценту.На этом этапе начинается развитие плода.

Что может пойти не так с яичниками?

Любые заболевания, при которых яичники не работают должным образом, могут снизить фертильность женщины.

Яичники естественным образом перестают функционировать во время менопаузы. Это происходит у большинства женщин в возрасте около 50 лет. Если это происходит раньше, до 40 лет, это называется преждевременной недостаточностью яичников или преждевременной недостаточностью яичников.

Наиболее частым заболеванием яичников является синдром поликистозных яичников, которым страдают 5–10% женщин репродуктивного возраста.В поликистозном яичнике фолликулы созревают до определенной стадии, но затем перестают расти и не могут выпустить яйцеклетку. На УЗИ эти фолликулы выглядят как кисты в яичниках. Любая аномалия, приводящая к потере нормального развития яичников, например синдром Тернера, может привести к неправильной работе яичников и потере фертильности женщины. Яичники могут быть повреждены при лечении других состояний, особенно химиотерапии или лучевой терапии для лечения рака.

Если у женщины прекращаются менструации в репродуктивном возрасте, это состояние называется аменореей.Это может быть вызвано рядом факторов. К ним относятся гипоталамическая аменорея, которая может быть вызвана худощавым / спортивным телосложением, регулярными физическими упражнениями и психологическим стрессом. В этих случаях фертильность можно восстановить за счет уменьшения интенсивности упражнений, увеличения веса и психологических вмешательств, таких как когнитивно-поведенческая терапия. Заболевания гипофиза могут повлиять на нормальную функцию яичников, потому что недостаток гормонов, обычно выделяемых гипофизом, снижает стимуляцию выработки гормонов и развитие фолликулов в яичниках.Повышенная активность щитовидной железы (тиреотоксикоз) может привести к аменорее, как и любое тяжелое заболевание.


Последний раз отзыв: фев 2018


,

Кисты яичников следует «наблюдать», а не удалять, как показывают исследования - ScienceDaily

Женщинам может не потребоваться операция по поводу доброкачественных кист яичников, чтобы избежать возможных хирургических осложнений.

Это открытие нового исследования группы международных ученых из институтов, включая Имперский колледж Лондона и KU Leuven, опубликованное в The Lancet Oncology .

В двухлетнем исследовании приняли участие 1919 женщин из 10 разных стран, включая Великобританию, Бельгию, Швецию и Италию, у которых были диагностированы доброкачественные кисты яичников.

Кисты яичников - это мешочки, заполненные жидкостью, которые развиваются на яичниках женщины. Они очень распространены и обычно не вызывают никаких симптомов. Однако в некоторых случаях они могут вызвать боль в области таза и вздутие живота.

Врачи направляют пациентов с этими симптомами на ультразвуковое исследование, при котором кисты классифицируются как доброкачественные (незлокачественные) или раковые. В случае подозрения на рак кисты всегда удаляются и анализируются.

В случае кист, которые считаются доброкачественными, женщинам по-прежнему часто рекомендуют удалять кисты хирургическим путем.Это потому, что считалось, что существует риск серьезных осложнений, таких как разрыв кисты или перекручивание яичников. Также были опасения, что доброкачественные кисты могут "превратиться в злокачественные", если их оставить на месте, или что киста могла быть неправильно классифицирована при первоначальном ультразвуковом сканировании.

Однако альтернативой хирургическому вмешательству является так называемое «бдительное ожидание», когда врачи не удаляют кисты, а контролируют их размер и внешний вид с помощью регулярных ультразвуковых исследований.Это связано с тем, что многие кисты сжимаются и исчезают или не меняются со временем.

Мнения по поводу осторожного ожидания по-прежнему разделились: многие врачи во всем мире считают, что доброкачественные кисты в большинстве случаев следует удалять хирургическим путем.

Это последнее исследование является крупнейшим на сегодняшний день по подходу «бдительного ожидания», в котором приняли участие почти 2000 женщин, прошедших сканирование в годы после диагностики доброкачественной кисты.

Из 1919 женщин, участвовавших в исследовании, каждая пятая (20 процентов) имела кисты, которые исчезли сами по себе, а 16 процентам были сделаны операции.В целом, в 80% случаев киста рассосалась или не требовала вмешательства. Средний возраст женщин в исследовании составлял 48 лет, а средний размер кисты - 4 см.

Только у 12 женщин впоследствии был диагностирован рак яичников, что составляет 0,4% риска. Однако исследователи предупреждают, что это может быть связано с тем, что опухоли изначально неправильно диагностировались как незлокачественные при первоначальном ультразвуковом сканировании, а не из-за того, что доброкачественная киста стала злокачественной.

Частота других осложнений, таких как перекручивание яичника или разрыв кисты, составила 0.4% и 0,2% соответственно.

Исследовательская группа считает, что эти риски необходимо оценивать наряду с рисками хирургического удаления. Риск осложнений, таких как перфорация кишечника, при хирургическом удалении кист у женщин в возрасте 50-74 лет составляет от 3 до 15 процентов.

Профессор Дирк Тиммерман, ведущий автор из KU Leuven объяснил: «Несмотря на то, что эти хирургические риски невелики, если бы женщины в этой возрастной группе подверглись хирургическому вмешательству в нашем исследовании, мы могли бы предположить, что от 29 до 123 из них могли пострадать от серьезных хирургических осложнений.Вместо этого только 96 из них были прооперированы, что означает, что серьезных осложнений можно было избежать у 29–123 женщин ».

Профессор Том Борн, ведущий исследователь из Имперского колледжа Лондона, сказал, что это исследование показывает, что настороженное ожидание подходит для большинства женщин, когда киста яичника изначально классифицируется как доброкачественная: «Наши результаты могут привести к сдвигу парадигмы, что приведет к меньшему количеству операций по поводу доброкачественных заболеваний. кисты яичников - при условии, что обученные специалисты УЗИ надежно исключат рак.«

Исследование финансировалось Исследовательским фондом Фландрии, Шведским исследовательским советом, Фондом общей больницы Мальмё по борьбе с раком, Имперским центром биомедицинских исследований Национального института медицинских исследований (NIHR) и Фондом Линбери.

История Источник:

Материалы предоставлены Imperial College London . Оригинал написан Кейт Уайтон. Примечание. Содержимое можно редактировать по стилю и длине.

,

Генетическая и гормональная регуляция образования яиц в яйцеводе кур-несушек

\ n

2. Гистоморфология и функции яйцевода

\ n

Воронка у кур охватывает весь яичник и имеет два различия: перепончатую и мышечную воронку. Перепончатая воронка покрывает яичниковый пучок, а мышечная воронка выстлана ресничными клетками и действует как проход для желтка внутри яйцевода. Яйцо остается в течение очень короткого периода (15–30 мин) в воронке, а затем опускается в магнум, где вокруг него откладывается белок.Таким образом, воронка также является местом для любого потенциального оплодотворения яйцеклетки. Магнум - самый большой сегмент яйцевода, вырабатывающий белки яичного белка, окружающие желток. Железистые эпителиальные клетки магнума синтезируют различные белки яичного белка, накапливают их и секретируют только в течение 2–3 часов, когда яйцо присутствует в нем, тогда как реснитчатые эпителиальные клетки помогают в транспорте яйца. Яичный белок богат белком и является основным источником питательных веществ для эмбриона во время развития.Он также содержит некоторые антимикробные белки, которые защищают эмбрион от патогенных микробов. Белок составляет более 60% от общего количества яйца, поэтому он определяет вес яйца и вес вылупляемого яйца. Позже яйцо движется вниз по перешейку, соединительному сегменту между магнумом и скорлупой, где оно остается в течение 1–2 часов. В перешейке наружная и внутренняя оболочки яичной скорлупы (ЭСМ) образуются вокруг яичного белка. Мембраны яичной скорлупы представляют собой волокнистые сети, удерживающие желе-яичный белок в центре, а также обеспечивают место для инициации минерализации яичной скорлупы.После того, как яйцо охвачено ESM, яйцо перемещается в скорлупе и находится там в течение 18–22 часов, в течение которых кристаллы кальцита откладываются на ESM, образуя скорлупу. Яичная скорлупа на 95% состоит из кальция и, таким образом, является основным источником кальция для растущего эмбриона. Структура яичной скорлупы предотвращает проникновение внешних микробов внутрь яйца, позволяя воздуху внутри яйца дышать незрелому эмбриону. В конце концов, после полной минерализации яичной скорлупы, яйцо на мгновение задерживается во влагалище.Пигментация яиц у некоторых птиц завершается во влагалище, и, наконец, яйцо откладывается.

\ n \ n

3. Генетическая регуляция образования яиц

\ n

Формирование яиц регулируется посредством пространственно-временной экспрессии генов / белков и биологических путей в сегментах яйцевода. Гены, кодирующие белок, экспрессируемые в яйцеводе, регулируют движение яйца, отложение компонентов яйца и обеспечивают формирование качественных яиц. Генетическая регуляция образования яиц в яйцеводе обсуждается ниже в зависимости от происхождения каждого компонента яйца.

\ n \ n

3.1 Генетическая регуляция образования белка

\ n

Белок, также известный как яичный белок, представляет собой желеобразную часть свежего яйца, богатую белком. Он состоит из почти 148 различных белков, которые жизненно важны для выживания и роста куриного эмбриона. Основные белки включают овальбумин (OVAL), кональбумин (TF), овомукоид (OVM), овомуцин (MUC) и лизоцим (LYZ) и другие. OVAL - это структурный белок, составляющий около 54% ​​от общего белка яичного белка. Овальбумин X, гомолог белка OVAL, обладает антимикробными свойствами [3].ТФ также обладает антимикробным действием [4, 5]. OVM - ингибитор трипсина и противомикробный агент [6]. MUC - мукопротеин, обладающий антибактериальной и противовирусной активностью [7, 8]. LYZ обладает хорошо известными антибиотическими эффектами. Большинство этих основных белков альбумина синтезируется в клетках канальцевых желез магнума. Аминокислоты, необходимые для образования этих белков, транспортируются из кровотока через эпителиальную мембрану в клетки железы с помощью специальных генов-транспортеров; носители растворенных веществ (SLC).Экспрессия многих мРНК SLC повышается в эпителии большой емкости во время формирования яйца (Sah et al., Неопубликовано). Синтез белков OVAL, TF, OVM и LYZ происходит в клетках одного типа (клетки железы) непрерывно со скоростью, пропорциональной их содержанию в яичном белке [9]. Экспрессия мРНК OVAL , TF , OVM и LYZ активируется в большом количестве кур-несушек в течение 4–23 часов после овуляции [10].

\ n

Как только яйцо попадает в магнум, оно вызывает механическое растяжение стенки магнума, которое вызывает стимул, запускающий высвобождение накопленных белков.Одной из таких молекул, которая вызывает секрецию белков эпителиальными клетками, является релаксин (RLN3). Экспрессия мРНК RNL3 повышается в магнум при наличии яйца у кур-несушек (Sah et al., Неопубликовано). Ренин-ангиотензиновая система (РАС), помимо своей почечной функции, участвует в сигнальном пути секреции белка. Белки OVAL, TF, OVM и LYZ высвобождаются в секреторных гранулах из желез и откладываются над желтком. Некоторые другие белки, которые включаются в яичный белок для его защиты, - это бета-дефенсины птиц, цистатин и авидин [11, 12, 13].

\ n \ n \ n

3.2 Генетическая регуляция образования мембран яичной скорлупы

\ n

Мембраны яичной скорлупы представляют собой волокнистые сети, расположенные во внешнем и внутреннем слоях, соединенные между собой волокнами, образующими сильно сшитую волокнистую сеть. Эта сеть обеспечивает места зарождения для инициации минерализации яичной скорлупы. Нарушение формирования и организации этих сшитых волокон может отрицательно сказаться на прочности яичной скорлупы [14]. Экспрессия нескольких генов и белков, когда яйцо находится в перешейке, имеет решающее значение для образования ESM.Коллагены являются основными волокнистыми компонентами ESM. Экспрессия мРНК коллагена X ( COL10A1 ) выше в перешейке кур-несушек [14]. Белки коллагена X являются гомотримером цепей α-1, секретируемых клетками канальцевых желез перешейка [15], которые обеспечивают структурную целостность ESM. Помимо коллагенов, формирование ESM зависит от других белков, таких как фибриллин-1, богатый цистеином мембранный белок яичной скорлупы (CREMP), лизилоксидаза, quiescin Q6 сульфгидрилоксидаза 1 (QSOX1) и тиоредоксин [1].Фибриллин-1 представляет собой микрофибриллярный гликопротеин, мРНК которого сверхэкспрессируется только в перешейке [14]. Фибриллин-1 придает ЭСМ эластичность. Основную составляющую цистеина в ESM составляют CREMP, которые больше всего экспрессируются в перешейке. CREMP также обладает некоторым антибактериальным действием на яйца. Лизилоксидазы, с другой стороны, представляют собой ферменты, обнаруженные в ESM, которые опосредуют образование поперечных связей между коллагеном и фибриллярными белками ESM [16]. Белок QSOX1 также опосредует возникновение сети ESM и регулирует целостность ESM [17].Фермент тиоредоксин катализирует образование дисульфидных поперечных связей между фибриллярными белками.

\ n \ n \ n

3.3 Генетическая регуляция биоминерализации яичной скорлупы

\ n

Куриная яичная скорлупа, самый внешний кальцинированный слой, очень важна для сохранности яиц. Роль нескольких генов и белков в синтезе и минерализации яичной скорлупы широко изучена. Минерализация яичной скорлупы активируется с образованием узелков кальцита на внешнем ESM и продолжается отложением и удлинением кристаллов карбоната кальция.Процесс минерализации происходит в кислой среде во внеклеточном матриксе маточной жидкости. Матричные белки, такие как овоклеидины, овокаликсины и остеопонтин, играют хорошо известную роль в организации кристаллов кальцита во время кальцификации яичной скорлупы. Другие локализованные белки эпителия матки, такие как кальбиндин, кальцитонин, отопетрин и АТФазы, также играют решающую роль в регуляции ионов в эпителии матки для минерализации яйцеклетки.

\ n

Для образования яичной скорлупы требуется огромное количество кальция, который поступает частично из пищевых источников и в основном за счет мобилизованных ионов кальция из костного мозга.Ионы-транспортирующие белки, отопетрин-2 и АТФаза 2C2, активно помогают переносу ионов Ca 2+ из кровотока в эпителиальные клетки матки [1]. Кальций также попадает в эпителий матки пассивно через кальциево-ионные каналы. Транспортирующая кальций АТФаза (ATP2C2) и связанный с кальцитонином полипептид-β (CALCB) запускают внутриклеточное высвобождение ионов Ca 2+ из резервных пулов кальция, таких как аппарат Гольджи и эндоплазматический ретикулум [2]. Повышенная концентрация внутриклеточных ионов Ca 2+ в эпителии матки поддерживается кальбиндином 1.Кальбиндин-1 облегчает транспорт внутриклеточных ионов Ca 2+ во внеклеточный матрикс (ECM) в просвете матки [18]. Са-АТФазы (PMCA) и кальций-обменники натрия (NCX) плазматической мембраны являются важными белками, необходимыми для оттока ионов Ca 2+ в маточную жидкость [18]. И PMCA, и NCX переносят одну молекулу иона Са с одновременным импортом одного иона Na + в эпителий матки. АТФазы, такие как ATP2B1 и ATP2B2, также транспортируют ионы Ca 2+ за счет импорта ионов H + [2, 19].Возникающее в результате увеличение клеточных ионов Na + компенсируется оттоком этих избыточных ионов с помощью ATP1A1, ATP1B1 и NKAIN4, но одновременным притоком ионов K + в эпителий матки. Опять же, повышенные концентрации K-ионов сводятся на нет из-за оттока через белки канала K + -ion, такие как KCNh2 или KCNJ2 [2, 19]. Таким образом, транспорт ионов Ca 2+ через эпителий матки требует баланса ионов Na + -, K + - и H + -, которые регулируются АТФазами, ионными каналами и некоторые другие белки.Бикарбонатные (HCO 3 \ n - ) -ионы не менее важны в минерализации яичной скорлупы. Фермент, карбоангидраза, катализирует образование клеточных ионов HCO 3 \ n - из диоксида углерода и воды. Затем ионы HCO 3 переносятся в маточную жидкость с помощью специальных белков-переносчиков, переносчиков растворенных веществ. Эти ионы HCO 3 \ n - в конечном итоге объединяются со свободными ионами Са в жидкости, омывающей яйцо, с образованием кристаллов кальцита.

\ n

Овоклеидины (OC) - это матричные белки яичной скорлупы, которые регулируют явление кристаллизации в матке. ОС-17 катализирует минерализацию аморфного карбоната кальция до кристаллов кальцита [20]. OC-116 регулирует организацию кристаллов кальцита в яичной скорлупе. Овокаликсины (OCX) состоят из трех основных белков, которые участвуют в минерализации яичной скорлупы. OCX-32 контролирует морфологию кристаллов кальцита и выполняет скорее антиминерализационную функцию во время фазы завершения кальцификации [21].Непосредственная роль OCX-36 в кальцификации яичной скорлупы не установлена, однако он защищает яйцо от микробной инвазии [22]. Другой член овокаликсинов, OCX-21, обеспечивает качественное образование яичной скорлупы, создавая благоприятную среду [23]. Остеопонтин, известный как секретируемый фосфопротеин, также является негативным регулятором кальцификации и определяет форму и форму яичной скорлупы [24].

\ n \ n \ n

3.4 Повсеместно распространенные белки яйцевода в регуляции образования яиц

\ n

Матричные металлопротеазы (MMP) - это повсеместно распространенные протеазы, которые, как известно, разрушают различные белки внеклеточного матрикса (ECM) [25].Клетки в организме окружены ECM, а рост, пролиферация и дифференцировка клеток регулируются деградацией и ремоделированием ECM посредством MMP [25]. ММП выявляются во всем яйцеводе, в основном в большой головке и матке [1]. Клетки большой большой емкости и матки имеют высокосекреторную природу, что требует разрастания эпителия. MMPs разрушают ECM, окружающий эпителий яйцевода, и помогают в миграции, пролиферации и дифференцировке клеток [25]. Различные MMPs (MMP-2, -7 и -9) активно экспрессируются в яйцеводе во время линьки, но подавляются во время перехода от незрелых к взрослым самкам [26, 27].Экспрессия MMP-1 и -10 наиболее высока у кур-несушек по сравнению с несушками и курами линьки (Sah et al., Unpublished). MMP-1 разрушает интерстициальные коллагены (тип I, II и III). MMP-2 разрушает коллагены типа IV и индуцирует ангиогенез. MMP-7 также известен как матрилизин, разрушающий казеин, фибронектин, эластин и протеогликаны. ММП-9 - это желатиназа, которая также провоцирует образование новых сосудов [28]. MMP-10 - это фермент стромелизин, который может расщеплять протеогликаны и фибронектины.Различные разрушающие матрицу роли вышеупомянутых MMP в конечном итоге обеспечивают правильные репродуктивные функции яйцевода.

\ n

Носители растворенных веществ (SLC) - еще одна группа повсеместно распространенных белков, обнаруженных в курином яйцеводе. SLC - это специализированные молекулярные транспортные белки, которые в значительной степени экспрессируются на плазматической мембране. В яйцеводе очевидна экспрессия более чем дюжины SLC [1, 2]. Некоторые SLC переносят неорганические ионы и аминокислоты в магнум во время образования белка [29].Некоторые SLC являются митохондриальными переносчиками и чрезмерно экспрессируются в матке [19]. SLC также активируются в маточно-влагалищном соединении, чтобы гарантировать выживание куриных сперматозоидов во время хранения [30, 31].

\ n \ n \ n

4. Гормональная регуляция образования яиц

\ n

Яйцообразование у кур-несушек - сложный процесс, связанный с взаимодействием различных молекул и гормонов. Гормоны имеют кардинальное значение во всех процессах образования яиц; от развития репродуктивного тракта, овуляции, синтеза белка, образования яичной скорлупы и, наконец, к откладке яиц.Ниже рассматриваются основные гормоны, играющие решающую роль в формировании яиц у кур-несушек.

\ n \ n

4.1 Роль гонадотропин-рилизинг-гормона (GnRH) в формировании яиц

\ n

GnRH у кур выделяется из гипоталамической / портальной системы в ответ на фотостимуляцию и повышение концентрации прогестерона. Две химические формы GnRH присутствуют у видов птиц: куриный GnRH-I (cGnRH-I) и куриный GnRH-II (cGnRH-II) [32]. Эти две формы GnRH играют разные роли у птиц.GnRH-I жизненно важен для стимуляции синтеза и высвобождения гормонов передней доли гипофиза, GnRH-II, с другой стороны, участвует в брачном поведении и ухаживании [33]. ГнРГ у кур регулируется катехоламином, вазотоцином, вазоактивным кишечным пептидом, нейропептидом Y и опиоидными пептидами [34]. Недавно мы обнаружили рецептор GnRH в яйцеводе кур-несушек; однако его функциональная роль в формировании яиц полностью неизвестна.

\ n \ n \ n

4.2 Роль гонадотропинов в образовании яиц

\ n

Гонадотропины; фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ) вырабатываются в передней доле гипофиза в ответ на ГнРГ из гипоталамуса.ФСГ у кур отвечает за набор и развитие клеток гранулезы в небольших фолликулах. ФСГ действует в основном на слой гранулезы небольших желтых фолликулов и фолликулы с шестого (F6) до третьего (F3) размера. Он также стимулирует выработку прогестерона в клетках гранулезы от фолликулов F6 до F3 [35]. Устойчивая концентрация ФСГ в плазме сохраняется на протяжении всего овуляторного цикла, за исключением небольшого увеличения примерно за 12 часов до овуляции [36]. ЛГ у кур, в отличие от других видов млекопитающих, не лютеинизирует фолликулы, скорее они участвуют в овуляции и стероидогенезе [37].Концентрация ЛГ в плазме достигает максимума примерно за 4–6 ч до овуляции (совпадает с пиковым повышением прогестерона), тогда как самая низкая концентрация ЛГ в плазме наблюдается за 11 ч до овуляции [38]. Первичной мишенью для ЛГ являются более крупные преовуляторные фолликулы.

\ n \ n \ n

4.3 Роль эстрогена в формировании яйцеклеток

\ n

Эстрогены в основном вырабатываются тека-клетками малых фолликулов. Наивысшая концентрация эстрадиола в плазме крови наблюдается за 4-6 часов до овуляции, хотя небольшое повышение уровня эстрогена также наблюдается за 18-23 часа до овуляции.Эстроген играет решающую роль в образовании яичного желтка, стимулируя птичью печень к выработке предшественника желтка, вителлогенина и липопротеинов очень низкой плотности, основного источника белка и липидов желтка, соответственно [39]. Эстрадиол также повышает чувствительность гипоталамуса к положительному эффекту обратной связи прогестерона. Помимо важной роли эстрадиола для роста и развития яйцевода, он также регулирует метаболизм кальция, необходимый для формирования яичной скорлупы и развития вторичных половых признаков.[37]. Альбумин в основном синтезируется в клетках канальцевых желез в магнуме и состоит в основном из овальбумина, кональбумина, овомукоида и лизоцима. Установлено, что эстроген связан с синтезом этих молекул и, таким образом, играет решающую роль в формировании яичного белка [40].

\ n \ n \ n

4.4 Роль прогестерона в формировании яйцеклеток

\ n

Прогестерон вместе с его родственными рецепторами регулирует женскую фертильность [41, 42]. Прогестерон в основном вырабатывается клетками гранулезы более крупных фолликулов (F1 – F3).Пиковая концентрация прогестерона в плазме достигается за 4–6 ч до овуляции [38]. Во время преовуляторного выброса ЛГ прогестерон выделяют только самые крупные преовуляторные фолликулы. Это увеличение прогестерона создает положительную обратную связь с гипоталамусом, который, в свою очередь, увеличивает секрецию гонадолиберина в портальной системе гипоталамуса-гипофиза, вызывая выброс ЛГ из передней доли гипофиза. Этот ЛГ вызывает разрыв и высвобождение желтка (яйцеклетки) из зрелых фолликулов (F1).Прогестерон также связан с выработкой авидина, сокращением миометрия и образованием яичной скорлупы [41].

\ n \ n \ n

4.5 Роль андрогенов в формировании яйцеклеток

\ n

Андрогены вырабатываются в клетках теки и гранулезы как малых, так и крупных фолликулов. Пиковая преовуляторная концентрация тестостерона наблюдается за 6–10 часов до овуляции, тогда как максимальная концентрация 5α-дигидротестостерона наблюдается за 6 часов до овуляции [41]. Роль андрогенов в овуляции до сих пор не ясна.Было обнаружено, что андрогены регулируют экспрессию генов овомукоида и овальбумина в яйцеводе курицы [43]. Андрогены также помогают в развитии вторичных половых признаков у кур, таких как рост и окраска гребешков и акации.

\ п \ п.

Смотрите также